Home | About Us | Editorial Board | Current Issue | Archives | Search | Instructions | Subscription | Feedback | e-Alerts | Login 
Journal of Indian Society of Pedodontics and Preventive Dentistry Official publication of Indian Society of Pedodontics and Preventive Dentistry
 Users Online: 1865  
 
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 ORIGINAL ARTICLE
Year : 2015  |  Volume : 33  |  Issue : 4  |  Page : 302-306

Traumatic impact loading on human maxillary incisor: A Dynamic finite element analysis


1 Department of Pedodontics and Preventive dentistry, Rajarajeswari Dental College and Hospital, Bengaluru, Karnataka, India
2 Department of Orthodontics and Dentofacial Orthopedics, Dayanand Sagar Dental College and Hospital, Bengaluru, Karnataka, India
3 Department of Orthodontics and Dentofacial Orthopedics, Narsinhbhai Patel Dental College, Visnagar, Gujarat, India
4 Department of Oral and Maxillofacial Surgery, Dayanand Sagar Dental College and Hospital, Bengaluru, Karnataka, India
5 Department of Conservative Dentistry, Dayanand Sagar Dental College and Hospital, Bengaluru, Karnataka, India

Correspondence Address:
Dr. K Jayasudha
Manish Homes, 9th Cross, 3D Main, JP Nagar First Phase, Bengaluru - 560 078, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-4388.165680

Rights and Permissions

Background: The most vulnerable tooth is the maxillary incisor, which sustains 80% of dental injuries. Dynamic Finite element analysis is used to understand the biomechanics of fracture of maxillary incisor under traumatic impact loading. Aim: The aim was to investigate the stress patterns of an upper incisor in a three-dimensional (3D) model under traumatic impact loading in various directions. Materials and Methods: A 3D finite element model of the upper incisor and surrounding tissues was established. A sinusoidal force of 800N was applied over a period of 4 ms. Results: Software performs a series of calculations and mathematical equations and yields the simulation results. During the horizontal impact (F1), stresses were concentrated in the cervical area of the crown, reaching peak stress of 125 MPa at 2 ms. Conclusion: A horizontal force exerted on the labial surface of the tooth tends to cause cervical crown fractures, oblique crown root fractures, and oblique root fractures.






[FULL TEXT] [PDF]*


        
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2216    
    Printed71    
    Emailed1    
    PDF Downloaded219    
    Comments [Add]    

Recommend this journal

 


Contact us | Sitemap | Advertise | What's New | Copyright and Disclaimer 
  2005 - Journal of Indian Society of Pedodontics and Preventive Dentistry | Published by Wolters Kluwer - Medknow 
Online since 1st May '05