Home | About Us | Editorial Board | Current Issue | Archives | Search | Instructions | Subscription | Feedback | e-Alerts | Login 
Journal of Indian Society of Pedodontics and Preventive Dentistry Official publication of Indian Society of Pedodontics and Preventive Dentistry
 Users Online: 691  
 
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 ORIGINAL ARTICLE
Year : 2019  |  Volume : 37  |  Issue : 2  |  Page : 177-184

Three-dimensional assessment of transverse displacement with Facemask and Maxgym in unilateral cleft lip and palate model


1 Department of Orthodontics and Dentofacial Orthopedics, Yenepoya Dental College, Yenepoya University, Mangalore, Karnataka, India
2 Craniofacial Center, GSR Institute of Craniofacial Surgery, Hyderabad, Andhra Pradesh, India
3 Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

Correspondence Address:
Dr. Rohan Mascarenhas
Department of Orthodontics and Dentofacial Orthopedics, Yenepoya Dental College, Yenepoya University, University Road, Mangalore - 575 018, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JISPPD.JISPPD_207_18

Rights and Permissions

Background: Growing patients with cleft lip and palate (CLP) exhibit maxillary deficiency due to early surgical intervention. Maxillary protraction with expansion is the recommended treatment modality for deficient maxilla. Facemask is a conventional protraction appliance, and Maxgym is a new protraction appliance. The purpose of this study is to compare the efficacy of Maxgym with Facemask using finite-element analysis. Methods: A three-dimensional finite-element model consisting of 49,807 nodes and 185,620 tetrahedral-shaped elements was created using computed tomography scan of a patient with unilateral CLP. F1, F2, and F3 represent different protraction forces of facemask, and M1, M2, and M3 represent different protraction forces of Maxgym. E1 represents slow maxillary expansion (SME) force, and E2 represents rapid maxillary expansion (RME) force. Facemask and Maxgym forces were applied parallel to the occlusal plane from the middle of the clinical crown on the buccal side of the first premolars. The forces E1 and E2 were also applied on the middle of the crown height on the lingual side of the first premolars and the first molars to simulate expansion. The amount of displacement for Maxgym and Facemask forces in transverse direction was analyzed designating specific nodes to represent dental and skeletal structures. Results: The dental and skeletal structures were displaced in transverse direction under all loading conditions. Only expansion or protraction force resulted in transverse displacement of nodes. RME produces greater transverse displacement as compared to SME. Maxgym forces produce greater transverse displacement as compared to facemask. Maxgym with RME produces greater transverse displacement as compared to Maxgym with SME, whereas facemask with RME produces greater transverse displacement as compared to facemask with SME. Conclusions: Maxgym forces produce greater transverse displacement as compared to facemask with or without expansion.






[FULL TEXT] [PDF]*


        
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed111    
    Printed3    
    Emailed0    
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal

 


Contact us | Sitemap | Advertise | What's New | Copyright and Disclaimer 
  2005 - Journal of Indian Society of Pedodontics and Preventive Dentistry | Published by Wolters Kluwer - Medknow 
Online since 1st May '05