Journal of Indian Society of Pedodontics and Preventive Dentistry
Journal of Indian Society of Pedodontics and Preventive Dentistry
                                                   Official journal of the Indian Society of Pedodontics and Preventive Dentistry                           
Year : 2011  |  Volume : 29  |  Issue : 3  |  Page : 202--204

Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice: An in vitro study


A Rao, A Rao, P Sudha 
 Department of Pedodontics, Manipal College of Dental Sciences, Mangalore, Manipal University, India

Correspondence Address:
A Rao
Department of Pedodontics, źDQ╗SeethaźDQ╗, 1-34-3071/3, Ashoknagar, Mangalore - 575 006
India

Background: In addition to their fluoride-releasing properties, glass ionomer cement (GICs) have the ability to reuptake and release fluorides from commonly used sources like fluoridated dentifrices. This property has the potential to provide a continuous low concentration of fluoride in the saliva aiding in caries prevention. The superior fluoride-recharging abilities of resin-modified GICs over conventional GICs have been documented. The manufacturer of a non-resin, auto-cured GIC (GC Fuji VII) claims fluoride release from the product to be about six times that of conventional GIC. It was hypothesized that perhaps this high fluoride release could translate into a high reuptake and release, when exposed to a 1 000 ppm fluoridated dentifrice every day, thus providing increased fluoride levels in saliva. Aims: This study therefore examined fluoride-recharging abilities of the non-resin, auto-cured glass ionomer cement from a 1 000 ppm fluoridated dentifrice and compared it with resin-modified glass ionomer cement. Materials and Methods: Twelve glass ionomer discs each of resin-modified glass ionomer cement (GC Fuji II L C, Group 1) and the non-resin, auto-cured glass ionomer cement (GC Fuji VII, Group 2) were prepared with precise dimensions of 9 x 2 mm. The 12 specimens in each group were further subdivided into two subgroups of six each. Subgroup A involved no fluoride treatment (Control). Subgroup B involved application of a 1 000 ppm dentifrice for 2 minutes twice daily with a soft toothbrush. The disc-specimens were then suspended in airtight plastic bottles containing exactly 20 ml double distilled water. The fluoride concentration of the water in which the specimen discs were immersed was measured by means of a fluoride ion selective electrode connected to an ion selective electrode meter/digital ion analyzer at 1, 2, 7, 15, and 30 days. Statistical Analysis: It was performed using the Kruskal-Wallis Test. Results and Conclusion: Fuji VII, despite a high fluoride release, did not significantly recharge when exposed to a 1 000 ppm fluoridated dentifrice.


How to cite this article:
Rao A, Rao A, Sudha P. Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice: An in vitro study.J Indian Soc Pedod Prev Dent 2011;29:202-204


How to cite this URL:
Rao A, Rao A, Sudha P. Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice: An in vitro study. J Indian Soc Pedod Prev Dent [serial online] 2011 [cited 2020 Jul 3 ];29:202-204
Available from: http://www.jisppd.com/article.asp?issn=0970-4388;year=2011;volume=29;issue=3;spage=202;epage=204;aulast=Rao;type=0